Claw-free graphs. III. Circular interval graphs

نویسندگان

  • Maria Chudnovsky
  • Paul D. Seymour
چکیده

Construct a graph as follows. Take a circle, and a collection of intervals from it, no three of which have union the entire circle; take a finite set of points V from the circle; and make a graph with vertex set V in which two vertices are adjacent if they both belong to one of the intervals. Such graphs are “circular interval graphs”, and they form an important subclass of the class of all claw-free graphs. In this paper we characterize them by excluded induced subgraphs. This is a step towards the main goal of this series, to find a structural characterization of all claw-free graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the recognition of fuzzy circular interval graphs

Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.

متن کامل

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphs

It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even no conjecture at hand today. Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a proper superclass of line ...

متن کامل

Circular Ones Matrices and the Stable Set Polytope of Quasi-Line Graphs

It is a long standing open problem to find an explicit description of the stable set polytope of clawfree graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even no conjecture at hand today. Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a proper superclass of line g...

متن کامل

The Structure of Claw-Free Perfect Graphs

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation. How...

متن کامل

On the facets of the stable set polytope of quasi-line graphs

It is a long standing open problem to find an explicit description of the stable set polytope of clawfree graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even no conjecture at hand today. Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a proper superclass of line g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2008